函数的导数可以叫函数的微商
❶ 函数的微分
函数的微分是:
由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。
推导:
设函数y=f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy=f(x0+Δx)−f(x0)可表示为Δy=AΔx+o(Δx),其中A是不依赖于△x的常数,o(Δx)是△x的高阶无穷小,则称函数y=f(x)在点x0是可微的。
AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。微分dy是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。得出:当△x→0时,△y≈dy。
导数的记号为:(dy)/(dx)=f′(X),我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为dy=f′(X)dX。
(1)函数的导数可以叫函数的微商扩展阅读:
正弦函数的导数:
假设正弦函数y=sin x(x的单位为弧度)上有一点(x,y)和另一点(x+δx,y+δy):
d/dx(sin x)
=limδx→0 δy/δx
=limδx→0 [sin (x+δx)-sin x]/δx
=limδx→0 2[cos 0.5(2x+δx)][sin 0.5(δx)]/δx (sin A-sin B=2[cos 0.5(A+B)][sin 0.5(A-B)])
=limδx→0 [cos 0.5(2x+δx)][sin 0.5(δx)]/0.5δx (两边除以2)
=limδx→0 [cos 0.5(2x+δx)]×[sin 0.5(δx)]/0.5δx
=limδx→0 [cos 0.5(2x+δx)]×limδx→0 [sin 0.5(δx)]/0.5δx
=cos 0.5(2x)×1 (limθ→0 (sin θ)/θ=1)
=cos x
最后得出d/dx(sin x)=cos x。
❷ 导数到底是什么意思啊,还有到底怎么求一个函数的导数,有没有具体的公式
导数也叫导函数值,又名微商,即当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。
2、两个函数的乘积的导函数:一导乘二+一乘二导。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。
4、如果有复合函数,则用链式法则求导。
(2)函数的导数可以叫函数的微商扩展阅读:
导数的性质:
(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
❸ 导数是用来干什么的
导数是用来反映函数局部性质的工具。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源自于极限的四则运算法则。
反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理表明了求原函数与积分是等价的。求导和积分是一对互逆操作,它们都是微积分学中最为基础的概念。
(3)函数的导数可以叫函数的微商扩展阅读:
导数的性质有:
一、单调性
若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
二、凹凸性
可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,相反则是向上凸的。
如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,相反这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。
参考资料来源:网络—导数
❹ 函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。 对吗为什么
这句话是对的。
但是从更严格的数学定义来说,导数的定义是:当自变量的变化趋于零时,函数值的变化与自变量的变化的比值的极限。因而导数可以理解为“函数的微分与自变量的微分之商”(这里“函数值的变化、自变量的变化”分别理解为“函数的微分、自变量的微分”)。
欢迎探讨数学、哲学、科技问题。
❺ 导数怎么求
、导数的定义
设函数y=f(x)在点x=x0及其附近有定义,当自变量x在x0处有改变量△x(△x可正可负),则函数y相应地有改变量△y=f(x0+△x)-f(x0),这两个改变量的比叫做函数y=f(x)在x0到x0+△x之间的平均变化率.
如果当△x→0时,有极限,我们就说函数y=f(x)在点x0处可导,这个极限叫做f(x)在点x0处的导数(即瞬时变化率,简称变化率),记作f′(x0)或,即
函数f(x)在点x0处的导数就是函数平均变化率当自变量的改变量趋向于零时的极限.如果极限不存在,我们就说函数f(x)在点x0处不可导.
2、求导数的方法
由导数定义,我们可以得到求函数f(x)在点x0处的导数的方法:
(1)求函数的增量△y=f(x0+△x)-f(x0);
(2)求平均变化率;
(3)取极限,得导数
3、导数的几何意义
函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率f′(x0).
相应地,切线方程为y-y0= f′(x0)(x-x0).
4、几种常见函数的导数
函数y=C(C为常数)的导数 C′=0.
函数y=xn(n∈Q)的导数 (xn)′=nxn-1
函数y=sinx的导数 (sinx)′=cosx
函数y=cosx的导数 (cosx)′=-sinx
5、函数四则运算求导法则
和的导数 (u+v)′=u′+v′
差的导数 (u-v)′= u′-v′
积的导数 (u·v)′=u′v+uv′
商的导数 .
6、复合函数的求导法则
一般地,复合函数y=f[φ(x)]对自变量x的导数y′x,等于已知函数对中间变量u=φ(x)的导数y′u,乘以中间变量u对自变量x的导数u′x,即y′x=y′u·u′x.
7、对数、指数函数的导数
(1)对数函数的导数
①;
②.公式输入不出来
其中(1)式是(2)式的特殊情况,当a=e时,(2)式即为(1)式.
(2)指数函数的导数
①(ex)′=ex
②(ax)′=axlna
其中(1)式是(2)式的特殊情况,当a=e时,(2)式即为(1)式.
导数又叫微商,是因变量的微分和自变量微分之商;给导数取积分就得到原函数(其实是原函数与一个常数之和)。
❻ 高中导数...求答..
你把邮箱给我、我给你发我这里有一个高中所有知识的概念及公式
已经发到邮箱了
❼ 微商 与 导数 有啥区别
如果是一元函数 微商等价于导数
如果是多元函数时 微商 可以 推出 可导
可导 不可以推出 可微
❽ 函数求导公式是什么
1、(C)'=0;
2、(x^a)'=ax^(a-1);
3、(a^x)'=(a^x)lna,a>0,a≠1;(e^x)'=e^x;
4、[logx]'=1/[xlna],a>0,a≠1,(lnx)'=1/x;
5、y=f(t),t=g(x),dy/dx=f'(t)*g'(x);
6、x=f(t),y=g(t),dy/dx=g'(t)/f'(t)。
(8)函数的导数可以叫函数的微商扩展阅读:
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。
❾ 微商和导数有什么区别
按照基本定义的话
导数和微商实际上是一回事
导数也叫导函数值
导数是微分之商,又称微商
即y'=dy/dx,是y和x二者微分的商
二者没有区别
❿ 高数常见函数求导公式
高数常见函数求导公式如下图:
求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。
(10)函数的导数可以叫函数的微商扩展阅读:
一阶导数表示的是函数的变化率,最直观的表现就在于函数的单调性,定理:设f(x)在[a,b]上连续,在(a,b)内具有一阶导数,那么:
(1)若在(a,b)内f'(x)>0,则f(x)在[a,b]上的图形单调递增;
(2)若在(a,b)内f’(x)<0,则f(x)在[a,b]上的图形单调递减;
(3)若在(a,b)内f'(x)=0,则f(x)在[a,b]上的图形是平行(或重合)于x轴的直线,即在[a,b]上为常数。
函数的导数就是一点上的切线的斜率。当函数单调递增时,斜率为正,函数单调递减时,斜率为负。
导数与微分:微分也是一种线性描述函数在一点附近变化的方式。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的。
可微的函数,其微分等于导数乘以自变量的微分dx,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。函数y=f(x)的微分又可记作dy=f'(x)dx。