当前位置:首页 » 微商世界 » 微分里证明是微商

微分里证明是微商

发布时间: 2021-07-16 20:53:31

Ⅰ 微分有什么意义

什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287—前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作。意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。这些都为后来的微积分的诞生作了思想准备。17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克·牛顿(1642-1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。这些概念是力学概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形——线、角、体,都看作力学位移的结果。因而,一切变量都是流量。牛顿指出,“流数术”基本上包括三类问题。(l)“已知流量之间的关系,求它们的流数的关系”,这相当于微分学。(2)已知表示流数之间的关系的方程,求相应的流量间的关系。这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。(3)“流数术”应用范围包括计算曲线的极大值、极小值、求曲线的切线和曲率,求曲线长度及计算曲边形面积等。牛顿已完全清楚上述(l)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。牛顿在1665年5月20目的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。莱布尼茨使微积分更加简洁和准确而德国数学家莱布尼茨(G.W.Leibniz1646-1716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是池们这些工作是零碎的,不连贯的,缺乏统一性。莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。牛顿在微积分的应用上地结合了运动学,造诣较莱布尼茨高一筹,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。莱布尼茨创造的微积分符号,正像印度——阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展,莱布尼茨是数学史上最杰出的符号创造者之一。牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。这也是网络出来的。不过感觉这个不错

Ⅱ 求解答微积分里的微商

微商就是导数dy/dx (两个微分的商)

Ⅲ 微商和微分的区别有谁知道啊 这两个是什

微商就是高中时候的导数
是就一个定点的斜率问题
而大学后是dy/dx
也就是微商了
也就是说~可以用微商的大小表示一个函数的增长率问题
微分则是dx
具体我也说不太清
他就是dy=f'(x)dx
dy就是这个函数的微分

Ⅳ 导数微分积分的区别

导数:如果是在某点处的导数的话,那导数有几何意思,那就是在该点处的切线的斜率。如果是函数和导数,就是因变量y对自变量x的变化率。结合后面的微分知识知道,导数其实是微商,即因变量的增量与自变量的增量的比值的极限,写成公式就是f'(x)=dy/dx,

微分:如果函数在某点处的增量可以表示成
△y=A△x+o(△x) (o(△x)是△x的高阶无穷小)
且A是一个与△x无关的常数的话,那么这个A△x就叫做函数在这点处的微分,用dy表示,即dy=A△x
△y=A△x+o(△x),两边同除△x有
△y/△x=A+o(△x)/△x,再取△x趋于0的极限有
lim△y/△x=lim[A+o(△x)/△x]=limA+lim[o(△x)/△x]=A+0
f'(x)=lim△y/△x=A
所以这里就揭示出了,导数与微分之间的关系了,
某点处的微分:dy=f'(x)△x
通常我们又把△x叫自变量的微分,用dx表示 所以就有
dy=f'(x)dx.证明出了微分与导数的关系
正因为f'(x)=dy/dx,所以导数也叫做微商(两个微分的商)

不定积分:求积分的过程,与求导的过程正好是逆过程,好加与减,乘与除的关系差不多。求一个函数f(x)的不定积分,就是要求出一个原函数F(x),使得F'(x)=f(x),
而F(x)+C(C为任意常数)就是不定积分∫f'(x)dx的所有原函数,
不定积分其实就是这个表达式:∫f'(x)dx

定积分与不定积分的区别是,定积分有上下限,∫(a,b)f'(x)dx
而不定积分是没有上下限的,因而不定积分的结果往往是个函数,定积分的结果则是个常数,这点对解积分方程有一定的帮助。

Ⅳ 微分和微商(导数)的本质区别

严格地说,是两回事,即两个概念。
导数:讲的是“变化率”---函数增量与自变量增量之比的极限(在自变量趋于0的情况下),即瞬时变化率。称为导数。
微分:是函数增量的近似值,即函数增量的线性主部。在计算上,是借助于导数的运算公式。
学习微积分,搞清概念,是非常重要的。
可以通过两个概念的引入例子,弄清两个不同的概念。

Ⅵ 微分,不定积分和微商的具体关系是什么

导数过去叫微商,例如dy/dx.其中dy是y的微分,补丁积分是微分的逆运算

Ⅶ 如何证明导数就是微商划线部分如何理解

就是:
一个因数×另一个因数=积
积除以一个因数=另一个因数
划线部分就是一个规定而已。

Ⅷ 微商和微分的区别

微商就是高中时候的导数 是就一个定点的斜率问题
而大学后是dy/dx 也就是微商了 也就是说~可以用微商的大小表示一个函数的增长率问题
微分则是dx 具体我也说不太清 他就是dy=f'(x)dx dy就是这个函数的微分

Ⅸ 函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。 对吗为什么

这句话是对的。
但是从更严格的数学定义来说,导数的定义是:当自变量的变化趋于零时,函数值的变化与自变量的变化的比值的极限。因而导数可以理解为“函数的微分与自变量的微分之商”(这里“函数值的变化、自变量的变化”分别理解为“函数的微分、自变量的微分”)。
欢迎探讨数学、哲学、科技问题。

热点内容
微信三天可见我还能看到对方朋友圈 发布:2021-08-17 15:55:04 浏览:114
微商神器x3朋友圈 发布:2021-08-17 15:54:12 浏览:667
微信朋友圈怎么才能不压缩视频 发布:2021-08-17 15:53:58 浏览:746
af男装微商 发布:2021-08-17 15:53:01 浏览:455
微信发朋友圈文字只显示一行 发布:2021-08-17 15:53:01 浏览:775
微信怎么看对方设置不看自己朋友圈 发布:2021-08-17 15:53:00 浏览:564
微商的万斯是正品吗 发布:2021-08-17 15:51:29 浏览:246
通过微信朋友圈加好友吗 发布:2021-08-17 15:50:38 浏览:802
微信发了朋友圈之后怎么修改 发布:2021-08-17 15:46:26 浏览:633
微商猜拳送手机诈骗怎么办 发布:2021-08-17 15:46:25 浏览:765