應用微商求導已知2x2y21
❶ 函數求導公式是什麼
1、(C)'=0;
2、(x^a)'=ax^(a-1);
3、(a^x)'=(a^x)lna,a>0,a≠1;(e^x)'=e^x;
4、[logx]'=1/[xlna],a>0,a≠1,(lnx)'=1/x;
5、y=f(t),t=g(x),dy/dx=f'(t)*g'(x);
6、x=f(t),y=g(t),dy/dx=g'(t)/f'(t)。
(1)應用微商求導已知2x2y21擴展閱讀:
不是所有的函數都有導數,一個函數也不一定在所有的點上都有導數。若某函數在某一點導數存在,則稱其在這一點可導,否則稱為不可導。可導的函數一定連續,但連續的函數不一定可導(如y=|x|在y=0處不可導)。
一個函數在某一點的導數描述了這個函數在這一點附近的變化率。如果函數的自變數和取值都是實數的話,函數在某一點的導數就是該函數所代表的曲線在這一點上的切線斜率。導數的本質是通過極限的概念對函數進行局部的線性逼近。
❷ 關於導數問題
這個不好說,最好看書,簡單提下吧
f'(x)>0則f(x)遞增,f'(x)<0則遞減
極值點是函數增減性發生改變的點,即f'(x)的正負發生變化的點。
(必要條件)對於可導函數來說f'(x0)=0是x=x0是極值點的必要條件。
一般f'(x)=0的根稱為零點(駐點)
若f'(x0)=0,f'(x0)≠0,可以根據f''(x0)的符號判斷極值點的性質即該點是極大值還是極小值(充分條件)
若f''(x0)>0,f(x0)為極小值
若f''(x0)<0,則f(x0)為極大值。
y=f''(x)的符號從幾何上表示了函數的凸凹性質。
定理:y=f''(x)>0等價於f((x1+x2)/2))<=(1/2)[f(x1)+f(x2)],且y=f(x)為該區間的凹函數。等號當且僅當x1=x2時成立。
類似有y=f''(x)>0等價於f((x1+x2)/2))>=(1/2)[f(x1)+f(x2)],且y=f(x)為該區間的凸函數。等號當且僅當x1=x2時成立
實際上這是琴生(JESEN)不等式。
❸ 如何用對數求導法求導
對數求導法適用函數法f(x)是乘積形式、商的形式、根式、冪的形式、指數形式或冪指函數形式的情況,求導時比較適用對數求導法。這是因為:取對數可將乘法運算或除法運算降格為加法或減法運算,取對數的運算可將根式、冪函數、指數函數及冪指函數運算降格成為乘除運算。
只要是上述形式就可以對等式兩邊同時求對數,可將冪函數、指數函數及冪指函數運算降格成為乘法運算,可將乘法運算或除法運算降格為加法或減法運算,使求導運算計算量大為減少。之後按照正常等式求法即可。
(3)應用微商求導已知2x2y21擴展閱讀
對數應用
對數在數學內外有許多應用。這些事件中的一些與尺度不變性的概念有關。例如,鸚鵡螺的殼的每個室是下一個的大致副本,由常數因子縮放。這引起了對數螺旋。Benford關於領先數字分配的定律也可以通過尺度不變性來解釋。
對數也與自相似性相關。例如,對數演算法出現在演算法分析中,通過將演算法分解為兩個類似的較小問題並修補其解決方案來解決問題。自相似幾何形狀的尺寸,即其部分類似於整體圖像的形狀也基於對數。對數刻度對於量化與其絕對差異相反的值的相對變化是有用的。
此外,由於對數函數log(x)對於大的x而言增長非常緩慢,所以使用對數標度來壓縮大規模科學數據。對數也出現在許多科學公式中,例如Tsiolkovsky火箭方程,Fenske方程或能斯特方程。
參考資料來源:網路—對數求導法
參考資料來源:網路—對數導數
❹ 隱函數的導數
如果方程f(x,y)=0能確定y是x的函數,那麼稱這種方式表示的函數是隱函數。
隱函數求導法則
對於一個已經確定存在且可導的情況下,我們可以用復合函數求導的鏈式法則來進行求導。在方程左右兩邊都對x進行求導,由於y其實是x的一個函數,所以可以直接得到帶有 y' 的一個方程,然後化簡得到 y' 的表達式。
隱函數導數的求解一般可以採用以下方法:
先把隱函數轉化成顯函數,再利用顯函數求導的方法求導;隱函數左右兩邊對x求導(但要注意把y看作x的函數); 利用一階微分形式不變的性質分別對x和y求導,再通過移項求得的值; 把n元隱函數看作(n+1)元函數,通過多元函數的偏導數的商求得n元隱函數的導數。舉個例子,若欲求z = f(x,y)的導數,那麼可以將原隱函數通過移項化為f(x,y,z) = 0的形式,然後通過(式中F'yF'x分別表示y和x對z的偏導數)來求解。
隱函數的導數介紹
設方 程P(x, y)=0確定y是x的函數, 並且可導. 現在可以利用復合函數求導公式可求出隱函數y對x的導數.
例1 方程 x2+y2-r 2=0確定了一個以x為自變數, 以y為因變數的數, 為了求y對x的導數, 將上式兩邊逐項對x求導, 並將y2看作x的復合函數, 則有
(x2)+ (y2)- (r 2)=0,
即 2x+2yy『=0,
於是得 .
從上例可以看到, 在等式兩邊逐項對自變數求導數, 即可得到一個包含y『的一次方程, 解出y¢, 即為隱函數的導數.
例2 求由方程y2=2px所確定的隱函數y=f(x)的導數.
解: 將方程兩邊同時對x求導, 得
2yy』=2p,
解出y『即得
例3 求由方程y=x ln y所確定的隱函數y=f(x)的導數.
解: 將方程兩邊同時對x求導, 得
y¢=ln y+x× ×y』解出y『;即得 .
例4 由方程x2+x y+y2=4確定y是x的函數, 求其曲線上點(2, -2)處的切線方程.
解: 將方程兩邊同時對x求導, 得
2x+y+x y』+2y y=0,
解出y『即得
所求切線的斜率為
k=y』 x=2,y=-2=1,
於是所求切線為
y-(-2)=×(x-2), 即y=x-4.
❺ 這個怎麼求導
這個題目如果關於x求導,就是這樣的結果,還是比較基礎的,希望對你有幫助
❻ 什麼數的導數是x
(1/2)x^2+c的導數是x。(其中c為常數項)
解答過程如下:
設y的導數y'=x。求y就是對x進行積分,則:
y=∫xdx
=(1/2)x^2+c(其中c為常數項)
所以,形如(1/2)x^2+c的導數都是x。
(6)應用微商求導已知2x2y21擴展閱讀:
常用的積分公式有:
(1)f(x)->∫f(x)dx
(2)k->kx
(3)x^n->[1/(n+1)]x^(n+1)
(4)a^x->a^x/lna
(5)sinx->-cosx
(6)cosx->sinx
(7)tanx->-lncosx
(8)cotx->lnsinx
常用導數公式:
1.y=c(c為常數) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna,y=e^x y'=e^x
4.y=logax y'=logae/x,y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
❼ 高數常見函數求導公式
高數常見函數求導公式如下圖:
求導是數學計算中的一個計算方法,它的定義就是,當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。
在一個函數存在導數時,稱這個函數可導或者可微分。可導的函數一定連續。不連續的函數一定不可導。
(7)應用微商求導已知2x2y21擴展閱讀:
一階導數表示的是函數的變化率,最直觀的表現就在於函數的單調性,定理:設f(x)在[a,b]上連續,在(a,b)內具有一階導數,那麼:
(1)若在(a,b)內f'(x)>0,則f(x)在[a,b]上的圖形單調遞增;
(2)若在(a,b)內f』(x)<0,則f(x)在[a,b]上的圖形單調遞減;
(3)若在(a,b)內f'(x)=0,則f(x)在[a,b]上的圖形是平行(或重合)於x軸的直線,即在[a,b]上為常數。
函數的導數就是一點上的切線的斜率。當函數單調遞增時,斜率為正,函數單調遞減時,斜率為負。
導數與微分:微分也是一種線性描述函數在一點附近變化的方式。微分和導數是兩個不同的概念。但是,對一元函數來說,可微與可導是完全等價的。
可微的函數,其微分等於導數乘以自變數的微分dx,換句話說,函數的微分與自變數的微分之商等於該函數的導數。因此,導數也叫做微商。函數y=f(x)的微分又可記作dy=f'(x)dx。
❽ 有關導數
亦名紀數、微商,由速度變化問題和曲線的切線問題而抽象出來的數學概念。又稱變化率。
如一輛汽車在10小時內走了 600千米,它的平均速度是60千米/小時,但在實際行駛過程中,是有快慢變化的,不都是60千米/小時。為了較好地反映汽車在行駛過程中的快慢變化情況,可以縮短時間間隔,設汽車所在位置s與時間t的關系為s=f(t),那麼汽車在由時刻t0變到t1這段時間內的平均速度是[f(t1)-f(t0)]/[t1-t0],當 t1與t0很接近時,汽車行駛的快慢變化就不會很大,平均速度就能較好地反映汽車在t0 到 t1這段時間內的運動變化情況 ,自然就把極限[f(t1)-f(t0)]/[t1-t0] 作為汽車在時刻t0的瞬時速度,這就是通常所說的速度。一般地,假設一元函數 y=f(x )在 x0點的附近(x0-a ,x0 +a)內有定義,當自變數的增量Δx= x-x0→0時函數增量 Δy=f(x)- f(x0)與自變數增量之比的極限存在且有限,就說函數f在x0點可導,稱之為f在x0點的導數(或變化率)。若函數f在區間I 的每一點都可導,便得到一個以I為定義域的新函數,記作 f',稱之為f的導函數,簡稱為導數。函數y=f(x)在x0點的導數f'(x0)的幾何意義:表示曲線l 在P0〔x0,f(x0)〕 點的切線斜率。一般地,我們得出用函數的導數來判斷函數的增減性的法則:設y=f(x )在(a,b)內可導。如果在(a,b)內,f'(x)≥0,則f(x)在這個區間是單調增加的。。如果在(a,b)內,f'(x)≤0,則f(x)在這個區間是單調減小的。所以,當f'(x)=0時,y=f(x )有極大值或極小值,極大值中最大者是最大值,極小值中最小者是最小值。
[編輯本段]導數是微積分中的重要概念。
導數定義為:當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。在一個函數存在導數時,稱這個函數可導或者可微分。可導的函數一定連續。不連續的函數一定不可導。
導數另一個定義:當x=x0時,f『(x0)是一個確定的數。這樣,當x變化時,f'(x)便是x的一個函數,我們稱他為f(x)的導函數(derivative function)(簡稱導數)。
y=f(x)的導數有時也記作y',即 f'(x)=y'=lim⊿x→0[f(x+⊿x)-f(x)]/⊿x
物理學、幾何學、經濟學等學科中的一些重要概念都可以用導數來表示。如,導數可以表示運動物體的瞬時速度和加速度、可以表示曲線在一點的斜率、還可以表示經濟學中的邊際和彈性。
以上說的經典導數定義可以認為是反映局部歐氏空間的函數變化。 為了研究更一般的流形上的向量叢截面(比如切向量場)的變化,導數的概念被推廣為所謂的「聯絡」。 有了聯絡,人們就可以研究大范圍的幾何問題,這是微分幾何與物理中最重要的基礎概念之一。
注意:1.f'(x)<0是f(x)為減函數的充分不必要條件,不是充要條件。
2.導數為零的點不一定是極值點。當函數為常值函數,沒有增減性,即沒有極值點。但導數為零。(導數為零的點稱之為駐點,如果駐點兩側的導數的符號相反,則該點為極值點,否則為一般的駐點,如y=x^3中f『(0)=0,x=0的左右導數符號為正,該點為一般駐點。)
[編輯本段]求導數的方法
(1)求函數y=f(x)在x0處導數的步驟:
① 求函數的增量Δy=f(x0+Δx)-f(x0)
② 求平均變化率
③ 取極限,得導數。
(2)幾種常見函數的導數公式:
① C'=0(C為常數函數);
② (x^n)'= nx^(n-1) (n∈Q);
③ (sinx)' = cosx;
④ (cosx)' = - sinx;
⑤ (e^x)' = e^x;
⑥ (a^x)' = (a^x) * Ina (ln為自然對數)
⑦ (Inx)' = 1/x(ln為自然對數)
⑧ (logax)' =(1/x)*logae,(a>0且a不等於1)
補充一下。上面的公式是不可以代常數進去的,只能代函數,新學導數的人往往忽略這一點,造成歧義,要多加註意。
(3)導數的四則運演算法則:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/ v^2
(4)復合函數的導數
復合函數對自變數的導數,等於已知函數對中間變數的導數,乘以中間變數對自變數的導數--稱為鏈式法則。
導數是微積分的一個重要的支柱。牛頓及萊布尼茨對此做出了卓越的貢獻!
[編輯本段]導數公式及證明
這里將列舉幾個基本的函數的導數以及它們的推導過程:
1.y=c(c為常數) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.f(x)=logaX f'(x)=1/xlna (a>0且a不等於1,x>0)
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/(cosx)^2
8.y=cotx y'=-1/(sinx)^2
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/(1+x^2)
12.y=arccotx y'=-1/(1+x^2)
在推導的過程中有這幾個常見的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整個變數,而g'(x)中把x看作變數』
2.y=u/v,y'=(u'v-uv')/v^2
3.y=f(x)的反函數是x=g(y),則有y'=1/x'
證:1.顯而易見,y=c是一條平行於x軸的直線,所以處處的切線都是平行於x的,故斜率為0。用導數的定義做也是一樣的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.這個的推導暫且不證,因為如果根據導數的定義來推導的話就不能推廣到n為任意實數的一般情況。在得到 y=e^x y'=e^x和y=lnx y'=1/x這兩個結果後能用復合函數的求導給予證明。
3.y=a^x,
⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能導出導函數的,必須設一個輔助的函數β=a^⊿x-1通過換元進行計算。由設的輔助函數可以知道:⊿x=loga(1+β)。
所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β
顯然,當⊿x→0時,β也是趨向於0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把這個結果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x後得到lim⊿x→0⊿y/⊿x=a^xlna。
可以知道,當a=e時有y=e^x y'=e^x。
4.y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因為當⊿x→0時,⊿x/x趨向於0而x/⊿x趨向於∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x。
可以知道,當a=e時有y=lnx y'=1/x。
這時可以進行y=x^n y'=nx^(n-1)的推導了。因為y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx•(nlnx)'=x^n•n/x=nx^(n-1)。
5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.類似地,可以導出y=cosx y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在對雙曲函數shx,chx,thx等以及反雙曲函數arshx,archx,arthx等和其他較復雜的復合函數求導時通過查閱導數表和運用開頭的公式與
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能較快捷地求得結果。
對於y=x^n y'=nx^(n-1) ,y=a^x y'=a^xlna 有更直接的求導方法。
y=x^n
由指數函數定義可知,y>0
等式兩邊取自然對數
ln y=n*ln x
等式兩邊對x求導,注意y是y對x的復合函數
y' * (1/y)=n*(1/x)
y'=n*y/x=n* x^n / x=n * x ^ (n-1)
冪函數同理可證
導數說白了它其實就是斜率
上面說的分母趨於零,這是當然的了,但不要忘了分子也是可能趨於零的,所以兩者的比就有可能是某一個數,如果分子趨於某一個數,而不是零的話,那麼比值會很大,可以認為是無窮大,也就是我們所說的導數不存在.
x/x,若這里讓X趨於零的話,分母是趨於零了,但它們的比值是1,所以極限為1.
建議先去搞懂什麼是極限.極限是一個可望不可及的概念,可以很接近它,但永遠到不了那個岸.
並且要認識到導數是一個比值.
導數的應用
1.函數的單調性
(1)利用導數的符號判斷函數的增減性
利用導數的符號判斷函數的增減性,這是導數幾何意義在研究曲線變化規律時的一個應用,它充分體現了數形結合的思想.
一般地,在某個區間(a,b)內,如果>0,那麼函數y=f(x)在這個區間內單調遞增;如果<0,那麼函數y=f(x)在這個區間內單調遞減.
如果在某個區間內恆有=0,則f(x)是常函數.
注意:在某個區間內,>0是f(x)在此區間上為增函數的充分條件,而不是必要條件,如f(x)=x3在內是增函數,但.
(2)求函數單調區間的步驟
①確定f(x)的定義域;
②求導數;
③由(或)解出相應的x的范圍.當時,f(x)在相應區間上是增函數;當時,f(x)在相應區間上是減函數.
2.函數的極值
(1)函數的極值的判定
①如果在兩側符號相同,則不是f(x)的極值點;
②如果在附近的左側,右側,那麼,是極大值;
③如果在附近的左側,右側,那麼,是極小值.
3.求函數極值的步驟
①確定函數的定義域;
②求導數;
③在定義域內求出所有的駐點,即求方程及的所有實根;
④檢查在駐點左右的符號,如果左正右負,那麼f(x)在這個根處取得極大值;如果左負右正,那麼f(x)在這個根處取得極小值.
4.函數的最值
(1)如果f(x)在〔a,b〕上的最大值(或最小值)是在(a,b)內一點處取得的,顯然這個最大值(或最小值)同時是個極大值(或極小值),它是f(x)在(a,b)內所有的極大值(或極小值)中最大的(或最小的),但是最值也可能在〔a,b〕的端點a或b處取得,極值與最值是兩個不同的概念.
(2)求f(x)在[a,b]上的最大值與最小值的步驟
①求f(x)在(a,b)內的極值;
②將f(x)的各極值與f(a),f(b)比較,其中最大的一個是最大值,最小的一個是最小值.
5.生活中的優化問題
生活中經常遇到求利潤最大、用料最省、效率最高等問題,這些問題稱為優化問題,優化問題也稱為最值問題.解決這些問題具有非常現實的意義.這些問題通常可以轉化為數學中的函數問題,進而轉化為求函數的最大(小)值問題.
6.實習作業
本節內容概括總結了微積分建立的時代背景,並闡述了其歷史意義,包括以下六部分:
(1)微積分的研究對象;
(2)歷史上對微積分產生和發展的評價;
(3)微積分產生的悠久歷史淵源;
(4)微積分產生的具體的時代背景;
(5)牛頓和萊布尼茨的工作;
(6)微積分的歷史意義.
❾ 導數的基本應用
應用
1.函數的單調性
(1)利用導數的符號判斷函數的增減性 利用導數的符號判斷函數的增減性,這是導數幾何意義在研究曲線變化規律時的一個應用,它充分體現了數形結合的思想. 一般地,在某個區間(a,b)內,如果f'(x)>0,那麼函數y=f(x)在這個區間內單調遞增;如果f'(x)<0,那麼函數y=f(x)在這個區間內單調遞減. 如果在某個區間內恆有f'(x)=0,則f(x)是常數函數. 注意:在某個區間內,f'(x)>0是f(x)在此區間上為增函數的充分條件,而不是必要條件,如f(x)=x3在R內是增函數,但x=0時f'(x)=0。也就是說,如果已知f(x)為增函數,解題時就必須寫f'(x)≥0。 (2)求函數單調區間的步驟(1.定義最基礎求法2.復合函數單調性) ①確定f(x)的定義域 ②求導數 ③由(或)解出相應的x的范圍.當f'(x)>0時,f(x)在相應區間上是增函數;當f'(x)<0時,f(x)在相應區間上是減函數.
2.函數的極值
(1)函數的極值的判定 ①如果在兩側符號相同,則不是f(x)的極值點 ②如果在附近的左右側符號不同,那麼,是極大值或極小值。
3.求函數極值的步驟
①確定函數的定義域 ②求導數 ③在定義域內求出所有的駐點與導數不存在的點,即求方程及的所有實根 ④檢查在駐點左右的符號,如果左正右負,那麼f(x)在這個根處取得極大值;如果左負右正,那麼f(x)在這個根處取得極小值.
4.函數的最值
(1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)內一點處取得的,顯然這個最大值(或最小值)同時是個極大值(或極小值),它是f(x)在(a,b)內所有的極大值(或極小值)中最大的(或最小的),但是最值也可能在[a,b]的端點a或b處取得,極值與最值是兩個不同的概念. (2)求f(x)在[a,b]上的最大值與最小值的步驟 ①求f(x)在(a,b)內的極值 ②將f(x)的各極值與f(a),f(b)比較,其中最大的一個是最大值,最小的一個是最小值.
5.生活中的優化問題
生活中經常遇到求利潤最大、用料最省、效率最高等問題,這些問題稱為優化問題,優化問題也稱為最值問題.解決這些問題具有非常現實的意義.這些問題通常可以轉化為數學中的函數問題,進而轉化為求函數的最大(小)值問題.
定義
設函數y=f(x)在點x0的某個鄰域N(x0,δ)內有定義,當自變數x在x0處有增量△x(設x0+△x∈N(x0,δ)),函數y=f(x)相應的增量為△y=f(x0+△x)-f(x0). 如果當△x→0時,函數的增量△y與自變數的增量△x之比的極限lim △y/△x=lim [f(x0+△x)-f(x0)]/△x存在,則稱這個極限值為f(x)在x0處的導數或變化率.通常可以記為f'(x0)或f'(x)|x=x0.
函數的可導性與導函數
一般地,假設一元函數 y=f(x )在 點x0的某個鄰域N(x0,δ)內有定義,當自變數取的增量Δx=x-x0時,函數相應增量為 △y=f(x0+△x)-f(x0),若函數增量△y與自變數增量△x之比當△x→0時的極限存在且有限,就說函數f(x)在x0點可導,並將這個極限稱之為f在x0點的導數或變化率。 「點動成線」:若函數f在區間I 的每一點都可導,便得到一個以I為定義域的新函數,記作 f(x)' 或y',稱之為f的導函數,簡稱為導數.
導數的幾何意義
函數y=f(x)在x0點的導數f'(x0)的幾何意義:表示函數曲線在P0[x 導數的幾何意義
0,f(x0)] 點的切線斜率(導數的幾何意義是該函數曲線在這一點上的切線斜率).
導數在科學上的應用
導數與物理,幾何,代數關系密切.在幾何中可求切線;在代數中可求瞬時變化率;在物理中可求速度,加速度. 導數亦名紀數、微商(微分中的概念),是由速度變化問題和曲線的切線問題(矢量速度的方向)而抽象出來的數學概念.又稱變化率. 如一輛汽車在10小時內走了 600千米,它的平均速度是60千米/小時.但在實際行駛過程中,是有快慢變化的,不都是60千米/小時.為了較好地反映汽車在行駛過程中的快慢變化情況,可以縮短時間間隔,設汽車所在位置s與時間t的關系為 s=f(t) 那麼汽車在由時刻t0變到t1這段時間內的平均速度是 [f(t1)-f(t0)]/[t1-t0] 當 t1與t0很接近時,汽車行駛的快慢變化就不會很大,平均速度就能較好地反映汽車在t0 到 t1這段時間內的運動變化情況 . 自然就把當t1→t0時的極限lim[f(t1)-f(t0)]/[t1-t0] 作為汽車在時刻t0的瞬時速度,這就是通常所說的速度.這實際上是由平均速度類比到瞬時速度的過程 (如我們駕駛時的限「速」 指瞬時速度)
編輯本段導數是微積分中的重要概念
導數另一個定義:當x=x0時,f'(x0)是一個確定的數。這樣,當x變化時,f'(x)便是x的一個函數,我們稱他為f(x)的導函數(derivative function),簡稱導數).
y=f(x)的導數有時也記作y',即(如右圖) : 物理學、幾何學、經濟學等學科中的一些重要概念都可以用導數來表示。如,導數可以表示運動物體的瞬時速度和加速度(就勻速直線加速度運動為例 位移關於時間的一階導數是瞬時速度 二階導數是加速度)、可以表示曲線在一點的斜率(矢量速度的方向)、還可以表示經濟學中的邊際和彈性。 以上說的經典導數定義可以認為是反映局部歐氏空間的函數變化。為了研究更一般的流形上的向量叢截面(比如切向量場)的變化,導數的概念被推廣為所謂的「聯絡」。有了聯絡,人們就可以研究大范圍的幾何問題,這是微分幾何與物理中最重要的基礎概念之一。 注意:1.f'(x)<0是f(x)為減函數的充分不必要條件,不是充要條件。 2.導數為零的點不一定是極值點。當函數為常值函數,沒有增減性,即沒有極值點。但導數為零。(導數為零的點稱之為駐點,如果駐點兩側的導數的符號相反,則該點為極值點,否則為一般的駐點,如y=x^3中f『(0)=0,x=0的左右導數符號為正,該點為一般駐點。)
編輯本段求導數的方法
(1)利用定義求函數y=f(x)在x0處導數的步驟: ① 求函數的增量Δy=f(x0+Δx)-f(x0) ② 求平均變化率
③ 取極限,得導數。 (2)幾種常見函數的導數公式: ① C'=0(C為常數函數) ② (x^n)'= nx^(n-1) (n∈Q*);熟記1/X的導數 ③ (sinx)' = cosx (cosx)' = - sinx (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2) ④(sinhx)'=coshx (coshx)'=sinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2) ⑤ (e^x)' = e^x (a^x)' = (a^x)lna (ln為自然對數) (Inx)' = 1/x(ln為自然對數) (logax)' =x^(-1) /lna(a>0且a不等於1) (x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2) 補充一下。上面的公式是不可以代常數進去的,只能代函數,新學導數的人往往忽略這一點,造成歧義,要多加註意。關於三角求導「正正余負」(三角包含三角函數,也包含反三角函數正指正弦、正切與正割。) (3)導數的四則運演算法則(和、差、積、商): ①(u±v)'=u'±v' ②(uv)'=u'v+uv' ③(u/v)'=(u'v-uv')/ v^2 4.復合函數的導數: 復合函數對自變數的導數,等於已知函數對中間變數的導數,乘以中間變數對自變數的導數--稱為鏈式法則。 5.積分號下的求導法 d(∫f(x,t)dt φ(x),ψ(x))/dx=f(x,ψ(x))ψ'(x)-f(x,φ(x))φ'(x)+∫[f 'x(x,t)dt φ(x),ψ(x)] 導數是微積分的一個重要的支柱。牛頓及萊布尼茨對此做出了卓越的貢獻!
編輯本段導數公式及證明
這里將列舉五類基本初等函數的導數以及它們的推導過程(初等函數可由之運算來): 基本導數公式
1.常函數(即常數)y=c(c為常數) y'=0 2.冪函數y=x^n,y'=nx^(n-1)(n∈Q*) 熟記1/X的導數 3.指數函數(1)y=a^x,y'=a^xlna ;(2)熟記y=e^x y'=e^x唯一一個導函數為本身的函數 4.對數函數(1)y=logaX,y'=1/xlna (a>0且a不等於1,x>0) ;熟記y=lnx,y'=1/x 5.正弦函數y=(sinx )y'=cosx 6.餘弦函數y=(cosx) y'=-sinx 7.正切函數y=(tanx) y'=1/(cosx)^2 8.餘切函數y=(cotx) y'=-1/(sinx)^2 9.反正弦函數y=(arcsinx) y'=1/√1-x^2 10.反餘弦函數y=(arccosx) y'=-1/√1-x^2 11.反正切函數y=(arctanx) y'=1/(1+x^2) 12.反餘切函數y=(arccotx) y'=-1/(1+x^2) 為了便於記憶,有人整理出了以下口訣: 常為零,冪降次,對倒數(e為底時直接倒數,a為底時乘以lna),指不變(特別的,自然對數的指數函數完全不變,一般的指數函數須乘以lna);正變余,余變正,切割方(切函數是相應割函數(切函數的倒數)的平方),割乘切,反分式 在推導的過程中有這幾個常見的公式需要用到: 1.y=f[g(x)],y'=f'[g(x)]·g'(x)『f'[g(x)]中g(x)看作整個變數,而g'(x)中把x看作變數』 2.y=u/v,y'=(u'v-uv')/v^2 3. 原函數與反函數導數關系(由三角函數導數推反三角函數的):y=f(x)的反函數是x=g(y),則有y'=1/x' 證:1.顯而易見,y=c是一條平行於x軸的直線,所以處處的切線都是平行於x的,故斜率為0。用導數的定義做也是一樣的:y=c,Δy=c-c=0,limΔx→0Δy/Δx=0。 2.這個的推導暫且不證,因為如果根據導數的定義來推導的話就不能推廣到n為任意實數的一般情況,只能證其為整數Q。主要應用導數定義與N次方差公式。在得到 y=e^x y'=e^x和y=lnx y'=1/x這兩個結果後能用復合函數的求導給予證明。 3.y=a^x, Δy=a^(x+Δx)-a^x=a^x(a^Δx-1) Δy/Δx=a^x(a^Δx-1)/Δx 如果直接令Δx→0,是不能導出導函數的,必須設一個輔助的函數β=a^Δx-1通過換元進行計算。由設的輔助函數可以知道:Δx=loga(1+β)。 所以(a^Δx-1)/Δx=β/loga(1+β)=1/loga(1+β)^1/β 顯然,當Δx→0時,β也是趨向於0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。 把這個結果代入limΔx→0Δy/Δx=limΔx→0a^x(a^Δx-1)/Δx後得到limΔx→0Δy/Δx=a^xlna。 可以知道,當a=e時有y=e^x y'=e^x。 4.y=logax Δy=loga(x+Δx)-logax=loga(x+Δx)/x=loga[(1+Δx/x)^x]/x Δy/Δx=loga[(1+Δx/x)^(x/Δx)]/x 因為當Δx→0時,Δx/x趨向於0而x/Δx趨向於∞,所以limΔx→0loga(1+Δx/x)^(x/Δx)=logae,所以有 limΔx→0Δy/Δx=logae/x。 也可以進一步用換底公式 limΔx→0Δy/Δx=logae/x=lne/(x*lna)=1/(x*lna)=(x*lna)^(-1) 可以知道,當a=e時有y=lnx y'=1/x。 這時可以進行y=x^n y'=nx^(n-1)的推導了。因為y=x^n,所以y=e^ln(x^n)=e^nlnx, 所以y'=e^nlnx·(nlnx)'=x^n·n/x=nx^(n-1)。 5.y=sinx Δy=sin(x+Δx)-sinx=2cos(x+Δx/2)sin(Δx/2) Δy/Δx=2cos(x+Δx/2)sin(Δx/2)/Δx=cos(x+Δx/2)sin(Δx/2)/(Δx/2) 所以limΔx→0Δy/Δx=limΔx→0cos(x+Δx/2)·limΔx→0sin(Δx/2)/(Δx/2)=cosx 6.類似地,可以導出y=cosx y'=-sinx。 7.y=tanx=sinx/cosx y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x 8.y=cotx=cosx/sinx y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x 9.y=arcsinx x=siny x'=cosy y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2 10.y=arccosx x=cosy x'=-siny y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2 11.y=arctanx x=tany x'=1/cos^2y y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2 12.y=arccotx x=coty x'=-1/sin^2y y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2 另外在對雙曲函數shx,chx,thx等以及反雙曲函數arshx,archx,arthx等和其他較復雜的復合函數求導時通過查閱導數表和運用開頭的公式與 4.y=u土v,y'=u'土v' 5.y=uv,y=u'v+uv' 均能較快捷地求得結果。 對於y=x^n y'=nx^(n-1) ,y=a^x y'=a^xlna 有更直接的求導方法。 y=x^n 由指數函數定義可知,y>0 等式兩邊取自然對數 ln y=n*ln x 等式兩邊對x求導,注意y是y對x的復合函數 y' * (1/y)=n*(1/x) y'=n*y/x=n* x^n / x=n * x ^ (n-1) 冪函數同理可證 導數說白了它其實就是曲線一點斜率,函數值的變化率 上面說的分母趨於零,這是當然的了,但不要忘了分子也是可能趨於零的,所以兩者的比就有可能是某一個數,如果分子趨於某一個數,而不是零的話,那麼比值會很大,可以認為是無窮大,也就是我們所說的導數不存在。 x/x,若這里讓X趨於零的話,分母是趨於零了,但它們的比值是1,所以極限為1. 建議先去搞懂什麼是極限。極限是一個可望不可及的概念,可以很接近它,但永遠到不了那個岸. 並且要認識到導數是一個比值。
❿ 如何用導數定義求導
導數
導數(derivative)亦名微商,由速度問題和切線問題抽象出來的數學概念。又稱變化率。如一輛汽車在10小時內走了 600千米,它的平均速度是60千米/小時,但在實際行駛過程中,是有快慢變化的,不都是60千米/小時。為了較好地反映汽車在行駛過程中的快慢變化情況,可以縮短時間間隔,設汽車所在位置s與時間t的關系為s=f(t),那麼汽車在由時刻t0變到t1這段時間內的平均速度是[f(t1)-f(t0)/t1-t0],當 t1與t0很接近時,汽車行駛的快慢變化就不會很大,平均速度就能較好地反映汽車在t0 到 t1這段時間內的運動變化情況 ,自然就把極限[f(t1)-f(t0)/t1-t0] 作為汽車在時刻t0的瞬時速度,這就是通常所說的速度。一般地,假設一元函數 y=f(x )在 x0點的附近(x0-a ,x0 +a)內有定義,當自變數的增量Δx= x-x0→0時函數增量 Δy=f(x)- f(x0)與自變數增量之比的極限存在且有限,就說函數f在x0點可導,稱之為f在x0點的導數(或變化率)。若函數f在區間I 的每一點都可導,便得到一個以I為定義域的新函數,記作 f′,稱之為f的導函數,簡稱為導數。函數y=f(x)在x0點的導數f′(x0)的幾何意義:表示曲線l 在P0〔x0,f(x0)〕 點的切線斜率。
導數是微積分中的重要概念。導數定義為,當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。在一個函數存在導數時,稱這個函數可導或者可微分。可導的函數一定連續。不連續的函數一定不可導。
物理學、幾何學、經濟學等學科中的一些重要概念都可以用導數來表示。如,導數可以表示運動物體的瞬時速度和加速度、可以表示曲線在一點的斜率、還可以表示經濟學中的邊際和彈性。
求導數的方法
[編輯本段]
(1)求函數y=f(x)在x0處導數的步驟:
① 求函數的增量Δy=f(x0+Δx)-f(x0)
② 求平均變化率
③ 取極限,得導數。
(2)幾種常見函數的導數公式:
① C'=0(C為常數);
② (x^n)'=nx^(n-1) (n∈Q);
③ (sinx)'=cosx;
④ (cosx)'=-sinx;
⑤ (e^x)'=e^x;
⑥ (a^x)'=a^xIna (ln為自然對數)
(3)導數的四則運演算法則:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/ v^2
(4)復合函數的導數
復合函數對自變數的導數,等於已知函數對中間變數的導數,乘以中間變數對自變數的導數--稱為鏈式法則。
導數是微積分的一個重要的支柱!
導數公式及證明
[編輯本段]
這里將列舉幾個基本的函數的導數以及它們的推導過程:
1.y=c(c為常數) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
在推導的過程中有這幾個常見的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整個變數,而g'(x)中把x看作變數』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的反函數是x=g(y),則有y'=1/x'
證:1.顯而易見,y=c是一條平行於x軸的直線,所以處處的切線都是平行於x的,故斜率為0。用導數的定義做也是一樣的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.這個的推導暫且不證,因為如果根據導數的定義來推導的話就不能推廣到n為任意實數的一般情況。在得到 y=e^x y'=e^x和y=lnx y'=1/x這兩個結果後能用復合函數的求導給予證明。
3.y=a^x,
⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能導出導函數的,必須設一個輔助的函數β=a^⊿x-1通過換元進行計算。由設的輔助函數可以知道:⊿x=loga(1+β)。
所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β
顯然,當⊿x→0時,β也是趨向於0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把這個結果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x後得到lim⊿x→0⊿y/⊿x=a^xlna。
可以知道,當a=e時有y=e^x y'=e^x。
4.y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因為當⊿x→0時,⊿x/x趨向於0而x/⊿x趨向於∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x。
可以知道,當a=e時有y=lnx y'=1/x。
這時可以進行y=x^n y'=nx^(n-1)的推導了。因為y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx•(nlnx)'=x^n•n/x=nx^(n-1)。
5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.類似地,可以導出y=cosx y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在對雙曲函數shx,chx,thx等以及反雙曲函數arshx,archx,arthx等和其他較復雜的復合函數求導時通過查閱導數表和運用開頭的公式與
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能較快捷地求得結果。
對於y=x^n y'=nx^(n-1) ,y=a^x y'=a^xlna 有更直接的求導方法。
y=x^n
由指數函數定義可知,y>0
等式兩邊取自然對數
ln y=n*ln x
等式兩邊對x求導,注意y是y對x的復合函數
y' * (1/y)=n*(1/x)
y'=n*y/x=n* x^n / x=n * x ^ (n-1)
冪函數同理可證